Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Use the long division method to find the result when x^3+9x² +21x +9 is divided
by x+3


Sagot :

Answer:

x^3 + 9 x^2 + 21 x + 9 = (x^2 + 6 x + 3)×(x + 3) + 0

Step-by-step explanation:

Set up the polynomial long division problem with a division bracket, putting the numerator inside and the denominator on the left:

x + 3 | x^3 | + | 9 x^2 | + | 21 x | + | 9

To eliminate the leading term of the numerator, x^3, multiply x + 3 by x^2 to get x^3 + 3 x^2. Write x^2 on top of the division bracket and subtract x^3 + 3 x^2 from x^3 + 9 x^2 + 21 x + 9 to get 6 x^2 + 21 x + 9:

| | | x^2 | | | |

x + 3 | x^3 | + | 9 x^2 | + | 21 x | + | 9

| -(x^3 | + | 3 x^2) | | | |

| | | 6 x^2 | + | 21 x | + | 9

To eliminate the leading term of the remainder of the previous step, 6 x^2, multiply x + 3 by 6 x to get 6 x^2 + 18 x. Write 6 x on top of the division bracket and subtract 6 x^2 + 18 x from 6 x^2 + 21 x + 9 to get 3 x + 9:

| | | x^2 | + | 6 x | |

x + 3 | x^3 | + | 9 x^2 | + | 21 x | + | 9

| -(x^3 | + | 3 x^2) | | | |

| | | 6 x^2 | + | 21 x | + | 9

| | | -(6 x^2 | + | 18 x) | |

| | | | | 3 x | + | 9

To eliminate the leading term of the remainder of the previous step, 3 x, multiply x + 3 by 3 to get 3 x + 9. Write 3 on top of the division bracket and subtract 3 x + 9 from 3 x + 9 to get 0:

| | | x^2 | + | 6 x | + | 3

x + 3 | x^3 | + | 9 x^2 | + | 21 x | + | 9

| -(x^3 | + | 3 x^2) | | | |

| | | 6 x^2 | + | 21 x | + | 9

| | | -(6 x^2 | + | 18 x) | |

| | | | | 3 x | + | 9

| | | | | -(3 x | + | 9)

| | | | | | | 0

The quotient of (x^3 + 9 x^2 + 21 x + 9)/(x + 3) is the sum of the terms on top of the division bracket. Since the final subtraction step resulted in zero, x + 3 exactly divides x^3 + 9 x^2 + 21 x + 9 and there is no remainder.

| | | x^2 | + | 6 x | + | 3 | (quotient)

x + 3 | x^3 | + | 9 x^2 | + | 21 x | + | 9 |

| -(x^3 | + | 3 x^2) | | | | |

| | | 6 x^2 | + | 21 x | + | 9 |

| | | -(6 x^2 | + | 18 x) | | |

| | | | | 3 x | + | 9 |

| | | | | -(3 x | + | 9) |

| | | | | | | 0 | (remainder) invisible comma

(x^3 + 9 x^2 + 21 x + 9)/(x + 3) = (x^2 + 6 x + 3) + 0

Write the result in quotient and remainder form:

Answer: Set up the polynomial long division problem with a division bracket, putting the numerator inside and the denominator on the left:

x + 3 | x^3 | + | 9 x^2 | + | 21 x | + | 9

To eliminate the leading term of the numerator, x^3, multiply x + 3 by x^2 to get x^3 + 3 x^2. Write x^2 on top of the division bracket and subtract x^3 + 3 x^2 from x^3 + 9 x^2 + 21 x + 9 to get 6 x^2 + 21 x + 9:

| | | x^2 | | | |

x + 3 | x^3 | + | 9 x^2 | + | 21 x | + | 9

| -(x^3 | + | 3 x^2) | | | |

| | | 6 x^2 | + | 21 x | + | 9

To eliminate the leading term of the remainder of the previous step, 6 x^2, multiply x + 3 by 6 x to get 6 x^2 + 18 x. Write 6 x on top of the division bracket and subtract 6 x^2 + 18 x from 6 x^2 + 21 x + 9 to get 3 x + 9:

| | | x^2 | + | 6 x | |

x + 3 | x^3 | + | 9 x^2 | + | 21 x | + | 9

| -(x^3 | + | 3 x^2) | | | |

| | | 6 x^2 | + | 21 x | + | 9

| | | -(6 x^2 | + | 18 x) | |

| | | | | 3 x | + | 9

To eliminate the leading term of the remainder of the previous step, 3 x, multiply x + 3 by 3 to get 3 x + 9. Write 3 on top of the division bracket and subtract 3 x + 9 from 3 x + 9 to get 0:

| | | x^2 | + | 6 x | + | 3

x + 3 | x^3 | + | 9 x^2 | + | 21 x | + | 9

| -(x^3 | + | 3 x^2) | | | |

| | | 6 x^2 | + | 21 x | + | 9

| | | -(6 x^2 | + | 18 x) | |

| | | | | 3 x | + | 9

| | | | | -(3 x | + | 9)

| | | | | | | 0

The quotient of (x^3 + 9 x^2 + 21 x + 9)/(x + 3) is the sum of the terms on top of the division bracket. Since the final subtraction step resulted in zero, x + 3 exactly divides x^3 + 9 x^2 + 21 x + 9 and there is no remainder.

| | | x^2 | + | 6 x | + | 3 | (quotient)

x + 3 | x^3 | + | 9 x^2 | + | 21 x | + | 9 |

| -(x^3 | + | 3 x^2) | | | | |

| | | 6 x^2 | + | 21 x | + | 9 |

| | | -(6 x^2 | + | 18 x) | | |

| | | | | 3 x | + | 9 |

| | | | | -(3 x | + | 9) |

| | | | | | | 0 | (remainder) invisible comma

(x^3 + 9 x^2 + 21 x + 9)/(x + 3) = (x^2 + 6 x + 3) + 0

Write the result in quotient and remainder form:

Answer: x^3 + 9 x^2 + 21 x + 9 = (x^2 + 6 x + 3)×(x + 3) + 0

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.