Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Using the equation of the circle, it is found that since it reaches an identity, the point (√5, 12) is on the circle.
What is the equation of a circle?
The equation of a circle of center [tex](x_0, y_0)[/tex] and radius r is given by:
[tex](x - x_0)^2 + (y - y_0)^2 = r^2[/tex]
In this problem, the circle is centered at the origin, hence [tex](x_0, y_0) = (0,0)[/tex].
The circle contains the point (-13,0), hence the radius is found as follows:
[tex]x^2 + y^2 = r^2[/tex]
[tex](-13)^2 + 0^2 = t^2[/tex]
[tex]r^2 = 169[/tex]
Hence the equation is:
[tex]x^2 + y^2 = 169[/tex]
Then, we test if point (√5, 12) is on the circle:
[tex]x^2 + y^2 = 169[/tex]
[tex](\sqrt{5})^2 + 12^2 = 169[/tex]
25 + 144 = 169
Which is an identity, hence point (√5, 12) is on the circle.
More can be learned about the equation of a circle at https://brainly.com/question/24307696
#SPJ1
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.