At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Using the binomial distribution, it is found that since 16 is more than 2.5 standard deviations above the mean, it is a unusually high number.
What is the binomial probability distribution?
It is the probability of exactly x successes on n repeated trials, with p probability of a success on each trial.
The expected value of the binomial distribution is:
E(X) = np
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
A measure is considered to be unusually high if it is more than 2.5 standard deviations above the mean.
In this problem, we hav ehtat:
- 34% of companies reject candidates because of information found on their social media, hence p = 0.34.
- 27 human resource professionals are randomly​ selected, hence n = 27.
Then, we find the threshold for unusually high values as follows:
E(X) = np = 27 x 0.34 = 9.18
[tex]\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{27(0.34)(0.66)} = 2.46[/tex]
T = 9.18 + 2 x 2.46 = 14.1.
Since 16 is more than 2.5 standard deviations above the mean, it is a unusually high number.
More can be learned about the binomial distribution at https://brainly.com/question/24863377
#SPJ1
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.