Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Using the binomial distribution, it is found that since 16 is more than 2.5 standard deviations above the mean, it is a unusually high number.
What is the binomial probability distribution?
It is the probability of exactly x successes on n repeated trials, with p probability of a success on each trial.
The expected value of the binomial distribution is:
E(X) = np
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
A measure is considered to be unusually high if it is more than 2.5 standard deviations above the mean.
In this problem, we hav ehtat:
- 34% of companies reject candidates because of information found on their social media, hence p = 0.34.
- 27 human resource professionals are randomly selected, hence n = 27.
Then, we find the threshold for unusually high values as follows:
E(X) = np = 27 x 0.34 = 9.18
[tex]\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{27(0.34)(0.66)} = 2.46[/tex]
T = 9.18 + 2 x 2.46 = 14.1.
Since 16 is more than 2.5 standard deviations above the mean, it is a unusually high number.
More can be learned about the binomial distribution at https://brainly.com/question/24863377
#SPJ1
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.