Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
[tex]S_1 = 2+4+6+8+...+26 \\\\~~~~=2(1+2+3+4+...+13)\\\\~~~~=2 \cdot \dfrac{13(13+1)}2~~~~~~~~;\left[\text{Sum of consecutive positive integers }= \dfrac{n(n+1)}2 \right] \\\\~~~~=13 \cdot 14\\\\~~~~=182\\\\S_2 = 1+3+5+7+...+25\\\\\text{It is an arithmetic series wihere}\\\\\text{First term, a =1, ~Common difference, d = 2,~ number of terms = n} \\\\~~~~\text{Nth term} = a+(n-1)d\\\\\implies 25 = 1+(n-1)2\\\\\implies 2n-2 = 24\\\\\implies 2n = 24+2\\\\\implies 2n= 26\\\\[/tex]
[tex]\implies n = \dfrac{26}2 \\\\\implies n= 13\\\\\text{S} _2= \dfrac{\text{n(First term+ Last term)}}{2}\\\\~~~~~~=\dfrac{13(1+25)}2\\\\~~~~~~=\dfrac{13 \times 26}2\\\\~~~~~~=13 \times 13\\\\~~~~~~=169\\\\\text{Hence,}~~ S_1 - S_2 =182 - 169 =13[/tex]
Answer:
13
Step-by-step explanation:
2 + 4 + 6 + 8 + ...... + 26
n = 13
Sum of first 'n' even numbers = n( n +1)
= 13 * 14
= 182
1 + 3 + 5 + 7 + .....+25
n = 13
Sum of first 'n' odd numbers = n²
= 13 * 13
= 169
2 + 4 + 6 + 8 + ... + 26 - (1 + 3 + 5 + 7 + ......+25) = 182 - 169
= 13
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.