Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Write the slope-intercept form of the equation of the line that is perpendicular to and passes through Point X. Show all work for full credit.

Write The Slopeintercept Form Of The Equation Of The Line That Is Perpendicular To And Passes Through Point X Show All Work For Full Credit class=

Sagot :

Answer:

[tex]y =\dfrac{12}{5}x + 22[/tex]

Step-by-step explanation:

Slope-intercept form of line:

First find the slope of the line AB. ie, m

Slope of the perpendicular line = -1/m

(2 , 3)  ⇒ x₁ = 2 & y₁ = 3  

(-10, 8)  ⇒ x₂ = -10 & y₂ = 8

[tex]\boxed{Slope=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]

          [tex]= \dfrac{8-3}{-10-2}\\\\=\dfrac{5}{-12}\\\\=\dfrac{-5}{12}[/tex]

[tex]\sf slope \ of \ the \ perpendicular \ line \ m_1 = \dfrac{-1}{m}= -1 \ \div \dfrac{-5}{12}[/tex]

                                                   [tex]\sf = -1 * \dfrac{12}{-5}=\dfrac{12}{5}[/tex]

Equation of the required line: y = mx + b

       [tex]y =\dfrac{12}{5}x+b[/tex]

The line passes through (-5 , 10). Substitute in the above equaiton,

         [tex]10 =\dfrac{12}{5}*(-5) + b\\\\ 10 = (-12) + b\\\\[/tex]

 10 + 12 = b

        b   = 22

Equation of the line:

  [tex]y =\dfrac{12}{5}x + 22[/tex]