Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The equation is 4^{3x} is equal to 8^{1/x} 2^{x+3} and the values of x are x is equal to (3+√69)/(10) or x is equal to (3-√69)/(10)
What is an exponential function?
It is defined as the function that rapidly increases and the value of the exponential function is always a positive. It denotes with exponent [tex]\rm y = a^x[/tex]
where 'a' is a constant and a>1
After following the rules to model the equation.
The equation becomes:
[tex]\rm 4^3^x= 8^{1/x}\times 2^{x+3}[/tex]
After solving, we get:
[tex]2^{6x}= 2^{3/x \ +x+3}[/tex] (power rule)
Taking log on both sides with base 2
[tex]\rm log_2(2^{6x})= log_2(2^{3/x \ +x+3})[/tex]
After solving, we will get a quadratic equation:
[tex]\rm 5x^2-3x-3 = 0[/tex]
After using quadratic formula, we will get,
[tex]\rm x=\dfrac{3+\sqrt{69}}{10}[/tex] or
[tex]\rm x=\dfrac{3-\sqrt{69}}{10}[/tex]
Thus, the equation is 4^{3x} is equal to 8^{1/x} 2^{x+3} and the values of x are x is equal to (3+√69)/(10) or x is equal to (3-√69)/(10)
Learn more about the exponential function here:
brainly.com/question/11487261
#SPJ1
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.