Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The equation is 4^{3x} is equal to 8^{1/x} 2^{x+3} and the values of x are x is equal to (3+√69)/(10) or x is equal to (3-√69)/(10)
What is an exponential function?
It is defined as the function that rapidly increases and the value of the exponential function is always a positive. It denotes with exponent [tex]\rm y = a^x[/tex]
where 'a' is a constant and a>1
After following the rules to model the equation.
The equation becomes:
[tex]\rm 4^3^x= 8^{1/x}\times 2^{x+3}[/tex]
After solving, we get:
[tex]2^{6x}= 2^{3/x \ +x+3}[/tex] (power rule)
Taking log on both sides with base 2
[tex]\rm log_2(2^{6x})= log_2(2^{3/x \ +x+3})[/tex]
After solving, we will get a quadratic equation:
[tex]\rm 5x^2-3x-3 = 0[/tex]
After using quadratic formula, we will get,
[tex]\rm x=\dfrac{3+\sqrt{69}}{10}[/tex] or
[tex]\rm x=\dfrac{3-\sqrt{69}}{10}[/tex]
Thus, the equation is 4^{3x} is equal to 8^{1/x} 2^{x+3} and the values of x are x is equal to (3+√69)/(10) or x is equal to (3-√69)/(10)
Learn more about the exponential function here:
brainly.com/question/11487261
#SPJ1
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.