Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
y=-1/4x+9/4
Step-by-step explanation:
Get slope of the line first (to find slope that is perpendicular, get the negative reciprocal)
4 turns into -1/4
To get the y-intercept, plug in the given coordinate values into this formula:
y=mx+b
3=-3(-1/4)+b
3-3/4=b
b=9/4
b is our y-intercept
9/4 is our y-intercept
keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the equation above
[tex]y = 4 + x\implies y = \stackrel{\stackrel{m}{\downarrow }}{1}x+4\qquad \impliedby \begin{array}{|c|ll}\cline{1-1}slope-intercept~form\\\cline{1-1}\\y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}}\\\\\cline{1-1}\end{array}[/tex]
so therefore
[tex]\stackrel{~\hspace{5em}\textit{perpendicular lines have \underline{negative reciprocal} slopes}~\hspace{5em}} {\stackrel{slope}{1\implies\cfrac{1}{1}} ~\hfill \stackrel{reciprocal}{\cfrac{1}{1}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{1}{1}\implies -1}}[/tex]
so we're really looking for the equation of a line whose slope is -1 and passes through (-3 , 3)
[tex](\stackrel{x_1}{-3}~,~\stackrel{y_1}{3})\qquad \qquad \stackrel{slope}{m}\implies -1 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{3}=\stackrel{m}{-1}(x-\stackrel{x_1}{(-3)}) \\\\\\ y-3=-(x+3)\implies y-3 = -x-3\implies y = -x[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.