Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Most problems like this can be done with two tools only: partial fractions, and the result 1/(1−w)=1+w+w2+⋯ for |w|<1. So first split your function f into 1/(z−2)−1/(z−1). I will show you how to cope with one of these factors, 1/(z−2). Writing this as −1211−z/2 is tempting but no good: the "1/(1−w)" expansion will converge only for |z/2|<1, not on the regions you are supposed to care about. So you take out a factor of z−1 instead:
1/(z−2)=z−111−2/z
The final term can be expanded with the 1/(1−w) series, valid for |2/z|<1 that is |z|>2. So that does give you a Laurent series valid in the right region (once you multiply bu z−1. These methods can be used to solve all of your problems.
Partial fractions:
[tex]f(z) = \dfrac z{(z-1)(2-z)} = -\dfrac1{1-z} + \dfrac2{2-z}[/tex]
For |z| < 1, we have
[tex]\displaystyle \frac1{1-z} = \sum_{n=0}^\infty z^n[/tex]
and
[tex]\displaystyle \frac2{2-z} = \frac1{1-\frac z2} = \sum_{n=0}^\infty \left(\frac z2\right)^n[/tex]
(The latter series is valid for |z/2| < 1 or |z| < 2, but |z| < 1 is a subset of this region.)
Then
[tex]\boxed{f(z) = \displaystyle \sum_{n=0}^\infty \left(\frac1{2^n} - 1\right) z^n}[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.