Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
About 0.0940 M.
Explanation:
Recall that NaOH is a strong base, so it dissociates completely into Na⁺ and OH⁻ ions. Because the acid is monoprotic, we can represent it with HA. Thus, the reaction between HA and NaOH is:
[tex]\displaystyle \text{HA}_\text{(aq)} + \text{OH}^-_\text{(aq)} \longrightarrow \text{H$_2$O}_\text{($\ell$)} + \text{A}^-_\text{(aq)}[/tex]
Using the fact that it took 15.00 mL of NaOH to reach the endpoint, determine the number of HA that was reacted with:
[tex]\displaystyle \begin{aligned} 15.00\text{ mL} &\cdot \frac{0.125\text{ mol NaOH}}{1\text{ L}} \cdot \frac{1\text{ L}}{1000\text{ mL}} \\ \\ &\cdot \frac{1\text{ mol OH}^-}{1\text{ mol NaOH}} \cdot \frac{1\text{ mol HA}}{1\text{ mol OH}^-}\\ \\ & = 0.00188\text{ mol HA}\end{aligned}[/tex]
Therefore, the molarity of the original solution was:
[tex]\displaystyle \left[ \text{HA}\right] = \frac{0.00188\text{ mol}}{20.00\text{ mL}} \cdot \frac{1000\text{ mL}}{1\text{ L}} = 0.0940\text{ M}[/tex]
In conclusion, the molarity of the unknown acid is about 0.0940 M.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.