Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
[tex]{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}[/tex]
Let [tex]\alpha[/tex] and [tex]\beta[/tex] be the two zeroes of P(x) = [tex]\sf {a}^{2} + bx + c[/tex]
• A polynomial is always equal to it's factors, also the constant "k" is not equal to zero
[tex] \tt \sf {a}^{2} + bx + c = k(x - \alpha )(x - \beta )[/tex]
• Using distributive property
[tex]\tt \sf {a}^{2} + bx + c = k \bigg( {x}^{2} - \beta x - \alpha x + \alpha \beta \bigg)[/tex]
[tex]\tt \sf {a}^{2} + bx + c = k {x}^{2} -k (\beta x )- k(\alpha x )+k( \alpha \beta )[/tex]
• Taking common
[tex]\tt \sf {a}^{2} + bx + c = k {x}^{2} -kx (\beta + \alpha)+k( \alpha \beta ) - - (1)[/tex]
• Equating coefficients of like terms
[tex] \sf \: a = k - - (2)[/tex]
[tex] \sf b = - k( \alpha + \beta ) - - (3)[/tex]
[tex] \sf c = k \alpha \beta - - (4)[/tex]
★ From 3
[tex] \sf b = - k( \alpha + \beta ) - - (3)[/tex]
★ From 2 we have a = k so we have -
[tex] \sf b = - a( \alpha + \beta ) [/tex]
[tex]\sf - \dfrac{b}{a} = ( \alpha + \beta ) [/tex]
[tex]\sf \therefore \boxed {{ \red{( \alpha + \beta ) = - \dfrac{b}{a} } }}[/tex]
• Sum of zeros = [tex]- \dfrac{b}{a}[/tex]
★ From 4
[tex] \sf c = k \alpha \beta - - (4)[/tex]
★ From 2 we have a = k so we have -
[tex] \sf c = a \: \alpha \: \beta[/tex]
[tex]\sf \dfrac{c}{a} = \alpha \beta[/tex]
[tex]\sf \therefore \boxed {{ \red{( \alpha \beta ) = \dfrac{c}{a} } }}[/tex]
• Product of zeros = [tex] \dfrac{c}{a}[/tex]
Also,
★ From 1
[tex]\tt \sf {a}^{2} + bx + c = k {x}^{2} -kx (\beta + \alpha)+k( \alpha \beta ) - - (1)[/tex]
[tex]\tt \sf {a}^{2} + bx + c = k \bigg( {x}^{2} -x ( \alpha + \beta ) + ( \alpha \beta \bigg) [/tex]
• Now just put S instead of sum of zeroes and P instead of product of zeroes
[tex] \tt \sf {a}^{2} + bx + c = k \bigg( {x}^{2} -x ( S ) + ( P \bigg) [/tex]
[tex]\tt \sf{a}^{2} + bx + c = \boxed{ \red{ \sf \tt k \bigg( {x}^{2} - Sx + ( P \bigg ) }}[/tex]
[tex]\rule{280pt}{2pt}[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.