Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
[tex]{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}[/tex]
Let [tex]\alpha[/tex] and [tex]\beta[/tex] be the two zeroes of P(x) = [tex]\sf {a}^{2} + bx + c[/tex]
• A polynomial is always equal to it's factors, also the constant "k" is not equal to zero
[tex] \tt \sf {a}^{2} + bx + c = k(x - \alpha )(x - \beta )[/tex]
• Using distributive property
[tex]\tt \sf {a}^{2} + bx + c = k \bigg( {x}^{2} - \beta x - \alpha x + \alpha \beta \bigg)[/tex]
[tex]\tt \sf {a}^{2} + bx + c = k {x}^{2} -k (\beta x )- k(\alpha x )+k( \alpha \beta )[/tex]
• Taking common
[tex]\tt \sf {a}^{2} + bx + c = k {x}^{2} -kx (\beta + \alpha)+k( \alpha \beta ) - - (1)[/tex]
• Equating coefficients of like terms
[tex] \sf \: a = k - - (2)[/tex]
[tex] \sf b = - k( \alpha + \beta ) - - (3)[/tex]
[tex] \sf c = k \alpha \beta - - (4)[/tex]
★ From 3
[tex] \sf b = - k( \alpha + \beta ) - - (3)[/tex]
★ From 2 we have a = k so we have -
[tex] \sf b = - a( \alpha + \beta ) [/tex]
[tex]\sf - \dfrac{b}{a} = ( \alpha + \beta ) [/tex]
[tex]\sf \therefore \boxed {{ \red{( \alpha + \beta ) = - \dfrac{b}{a} } }}[/tex]
• Sum of zeros = [tex]- \dfrac{b}{a}[/tex]
★ From 4
[tex] \sf c = k \alpha \beta - - (4)[/tex]
★ From 2 we have a = k so we have -
[tex] \sf c = a \: \alpha \: \beta[/tex]
[tex]\sf \dfrac{c}{a} = \alpha \beta[/tex]
[tex]\sf \therefore \boxed {{ \red{( \alpha \beta ) = \dfrac{c}{a} } }}[/tex]
• Product of zeros = [tex] \dfrac{c}{a}[/tex]
Also,
★ From 1
[tex]\tt \sf {a}^{2} + bx + c = k {x}^{2} -kx (\beta + \alpha)+k( \alpha \beta ) - - (1)[/tex]
[tex]\tt \sf {a}^{2} + bx + c = k \bigg( {x}^{2} -x ( \alpha + \beta ) + ( \alpha \beta \bigg) [/tex]
• Now just put S instead of sum of zeroes and P instead of product of zeroes
[tex] \tt \sf {a}^{2} + bx + c = k \bigg( {x}^{2} -x ( S ) + ( P \bigg) [/tex]
[tex]\tt \sf{a}^{2} + bx + c = \boxed{ \red{ \sf \tt k \bigg( {x}^{2} - Sx + ( P \bigg ) }}[/tex]
[tex]\rule{280pt}{2pt}[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.