At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
[tex]\textsf{a)} \quad y=(x+1)^2-4[/tex]
[tex]\textsf{b)} \quad y=2(x-4)^2-2[/tex]
Step-by-step explanation:
Vertex form of a parabola: [tex]y=a(x-h)^2+k[/tex]
(where (h, k) is the vertex and [tex]a[/tex] is some constant)
Part a
- Vertex = (-1, -4)
- Point on parabola = (1, 0)
Substitute the vertex into the formula:
[tex]\begin{aligned}\implies y &=a(x-(-1))^2-4\\y & =a(x+1)^2-4\end{aligned}[/tex]
Substitute the point (1, 0) into the formula:
[tex]\begin{aligned}\implies a(1+1)^2-4&=0\\4a-4&=0\\4a &=4\\a &=1\end{aligned}[/tex]
Therefore, the equation of the parabola in vertex form is:
[tex]y=(x+1)^2-4[/tex]
Part b
- Vertex = (4, -2)
- Point on parabola = (6, 6)
Substitute the vertex into the formula:
[tex]\begin{aligned}\implies y &=a(x-4)^2+(-2)\\y & =a(x-4)^2-2\end{aligned}[/tex]
Substitute the point (6, 6) into the formula:
[tex]\begin{aligned}\implies a(6-4)^2-2&=6\\4a-2 & =6\\4a &=8\\a &=2\end{aligned}[/tex]
Therefore, the equation of the parabola in vertex form is:
[tex]y=2(x-4)^2-2[/tex]
- Vertex at (-1,-4)
- Passes through (1,0)
Find a
- a(x-h)²+k=y
- a(1+1)²-4=0
- 4a-4=0
- 4a=4
- a=1
So
Vertex form
- y=(x+1)²-4
#2
- (h,k)=(4,-2)
- passes through (6,6)
Find a
- a(6-4)²-2=6
- 4a=8
- a=2
Vertex form
- y=2(x-4)²-2
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.