At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Use the Venn diagram to calculate probabilities.

Circles A, B, and C overlap. Circle A contains 3, circle B contains 9, and circle C contains 6. The overlap of A and B contains 1, the overlap of B and C contains 4, and the overlap of C and A contains 7. The overlap of the 3 circles contains 6. Number 8 is outside of the circles.

Which probability is correct?

P(A|B) = One-half
P(B|A) = StartFraction 7 Over 20 EndFraction
P(A|C) = StartFraction 6 Over 23 EndFraction
P(C|A) = StartFraction 13 Over 17 EndFraction


Sagot :

Using the probability concept and the Venn diagram described, the correct option is given by:

P(C|A) = 13/17.

What is a probability?

A probability is given by the number of desired outcomes divided by the number of total outcomes.

P(A|B) is given by the sum of the values that involve both A and B by the sum of all values that involve B, hence:

  • D = 1(overlap of A and B) + 6(Overlap of the 3).
  • T = 9 + 1 + 4 + 6 = 20.

Hence:

P(A|B) = 7/20.

Following the same logic, we have that:

  • P(B|A) = (1 + 6)/(3 + 1 + 7 + 6) = 7/17
  • P(A|C) = (7 + 6)/(6 + 4 + 7 + 6) = 13/23
  • P(C|A) = (7 + 6)/ (3 + 1 + 7 + 6) = 13/17.

Hence the last option is correct.

More can be learned about probabilities at https://brainly.com/question/14398287

#SPJ1

Answer:

the correct answer is 13/17

I got it right on edge 2022

Step-by-step explanation: