Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the equation above
[tex]y = \stackrel{\stackrel{m}{\downarrow }}{-\cfrac{1}{3}}x+5\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\stackrel{~\hspace{5em}\textit{perpendicular lines have \underline{negative reciprocal} slopes}~\hspace{5em}} {\stackrel{slope}{\cfrac{-1}{3}} ~\hfill \stackrel{reciprocal}{\cfrac{3}{-1}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{3}{-1}\implies 3}}[/tex]
so we're really looking for the equation of a line whose slope is 3 and passes through (1 , 10)
[tex](\stackrel{x_1}{1}~,~\stackrel{y_1}{10})\qquad \qquad \stackrel{slope}{m}\implies 3 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{10}=\stackrel{m}{3}(x-\stackrel{x_1}{1}) \\\\\\ y-10=3x-3\implies y=3x+7[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.