Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answers:
k = -3.5
Intersection point is (0.5, -2.5)
================================================
Explanation:
Apply the derivative to y=2x^2-3 and you should get dy/dx = 4x
The derivative helps determine the slope of the tangent at any point on the curve.
The slope of the tangent line y = 2x+k is 2.
We want the slope of the tangent to be 2, so we'll replace the dy/dx with 2 and solve for x.
dy/dx = 4x
2 = 4x
x = 2/4
x = 0.5
Plug this into the curve's original equation.
y = 2x^2 - 3
y = 2(0.5)^2 - 3
y = -2.5
Therefore, the tangent line y = 2x+k and the curve y = 2x^2-3 intersect at the point (0.5, -2.5). This is the point of tangency.
We'll use the coordinates of this point to determine k.
y = 2x+k
-2.5 = 2(0.5) + k
-2.5 = 1 + k
k = -2.5-1
k = -3.5
Visual verification is shown below. I used GeoGebra to make the graph, but you could use any other tool you prefer (such as Desmos).
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.