Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
well, since we know the endpoints for the diameter, its midpoint will be where the center of the circle is located, so
[tex]~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-10}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{11}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -4 -10}{2}~~~ ,~~~ \cfrac{ 11 + 5}{2} \right)\implies \left(\cfrac{-14}{2}~~,~~\cfrac{16}{2} \right)\implies \stackrel{center}{(-7~~,~~8)}[/tex]
and if we get the distance between those endpoints, and take half of that, that'd be the radius of it.
[tex]~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-10}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{11})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-4 - (-10)]^2 + [11 - 5]^2}\implies d=\sqrt{(-4+10)^2+6^2} \\\\\\ d=\sqrt{6^2+6^2}\implies d=\sqrt{72}~\hfill \stackrel{radius=half~that}{\cfrac{\sqrt{72}}{2}} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-7}{ h},\stackrel{8}{ k})\qquad \qquad radius=\stackrel{\frac{\sqrt{72}}{2}}{ r} \\\\\\\ [x-(-7)]^2~~ + ~~[y-8]^2~~ = ~~\left( \frac{\sqrt{72}}{2} \right)^2\implies (x+7)^2~~ + ~~(y-8)^2~~ = ~~18[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.