Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Check the picture below.
well, HIJK is a parallelogram only if its diagonals bisect each other, if that's so, the midpoint of HJ is the same as the midpoint of IK, let's check
[tex]~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ H(\stackrel{x_1}{0}~,~\stackrel{y_1}{5})\qquad J(\stackrel{x_2}{4}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 4 + 0}{2}~~~ ,~~~ \cfrac{ -1 + 5}{2} \right)\implies \left( \cfrac{4}{2}~~,~~\cfrac{4}{2} \right)\implies \boxed{(2~~,~~2)} \\\\[-0.35em] ~\dotfill[/tex]
[tex]~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ I(\stackrel{x_1}{3}~,~\stackrel{y_1}{3})\qquad K(\stackrel{x_2}{1}~,~\stackrel{y_2}{1}) ~\hfill \left(\cfrac{ 1 + 3}{2}~~~ ,~~~ \cfrac{ 1 + 3}{2} \right)\implies \boxed{(2~~,~~2)}[/tex]
![View image jdoe0001](https://us-static.z-dn.net/files/d95/1459d5fd48cda568f933e7062e8fa222.png)
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.