Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The solution of the function [tex]\rm \int{sin(t) (1 + cos(t) )} \, dt[/tex] is - cos t - ¹/₄cos 2t + c.
What is the indefinite integral?
An indefinite integral is a function that practices the antiderivative of another function.
It can be visually represented as an integral symbol, a function, and then a dx at the end.
The given function is;
[tex]\rm \int{sin(t) (1 + cos(t) )} \, dt[/tex]
Multiply by sint in the function and simplify;
[tex]\rm \int{sin(t) (1 + cos(t) )} \, dt\\\\\rm \int{sin(t) + sin(t)cos(t) \, dt[/tex]
Use trigonometric formulas for double angles:
[tex]\rm 2sintcost =sin2t\\\\sin t cost =\dfrac{1}{2} sin2t[/tex]
Substitute the values in the function
[tex]\rm \int{sin(t) (1 + cos(t) )} \, dt\\\\\rm \int{sin(t) + sin(t)cos(t) \, dt}\\\\ \int{sin(t) + \dfrac{1}{2} sin2t \, dt}\\\\[/tex]
And now we integrate this trigonometric form.
[tex]\rm \int{sin(t) + \dfrac{1}{2} sin2t \, dt}\\\\ \int{sin(t) dt } +\dfrac{1}{2}\int{sin(2t)\, dt}\\\\-cost -\dfrac{1}{2} \times \dfrac{1 \times -cos2t}{2}\\\\-cost -\dfrac{{1 \times -cos2t}}{4}+c[/tex]
Hence, the solution of the given function is - cos t - ¹/₄cos 2t + c.
Learn more about indefinite integral here;
https://brainly.com/question/9829575
#SPJ4
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.