Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The absolute maximum of the function is 184 and the minimum value of the function is -72.
What is the absolute maximum value?
If the graph of an absolute value function opens downward, the y-value of the vertex is the maximum value of the function.
Given the function f(x) = x⁴-18x²+9 at the interval [-5, 5], the absolute maximum and minimum values at this endpoints are as calculated;
At end point x = -5
f(-5) = (-5)⁴-18(-5)²+9
f(-5) = 625-450+9
f(-5) = 184
At end point x = 5
f(5) = (5)⁴-18(5)²+9
f(5) = 625-450+9
f(5) = 184
To get the critical point, this point occurs at the turning point i.e at
dy/dx = 0
if y = x⁴-18x²+9
dy/dx = 4x³-36x = 0
4x³-36x = 0
4x (x²-9) = 0
4x = 0
x = 0
x²-9 = 0
x² = 9
x = ±3
Using the critical points [0, ±3]
when x = 0, f(0) = 0⁴-18(0)+9
f(0) = 9
Similarly when x = 3, f(±3)= (±3)⁴-18(±3)²+9
f(±3) = 81-162+9
f(±3) = -72
It can be seen that the absolute minimum occurs at x= ±5 and the absolute minimum occurs at x =±3
absolute maximum = 184
absolute minimum = -72
Hence, the absolute maximum of the function is 184 and the minimum value of the function is -72.
Learn more about absolute maximum value here;
https://brainly.com/question/17001091
#SPJ4
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.