Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

In an isosceles triangle the length of the base is 10 cm

Sagot :

The computation shows the radius of the circle that is inscribed in the isosceles triangle will be 3.33cm.

How to calculate the radius?

From the information given, the isosceles triangle the length of a base is 10 cm and the length of a leg is 13 cm.

Let A = area of the triangle

Let S = semi perimeter of the triangle.

The radius will be: = A/S

where,

[tex]S = \dfrac{(a + b + c)}{2} = \dfrac{(13 + 13 + 10)}{2} = 18[/tex]

The radius will be:

 [tex]=\dfrac{(\sqrt{18} - \sqrt{13})(\sqrt{18} - \sqrt{13})(\sqrt{18} - \sqrt{10})} { 18}[/tex]

= 3.33cm

In conclusion, the radius is 3.33cm.

Learn more about triangles on:

brainly.com/question/17335144

#SPJ4

We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.