Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The greatest observed shift in wavelength, as seen in the scattered photon, when an x-ray photon of wavelength 0. 10 nm is compton-scattered from a free electron is 0.048 nm.
How to find the shift in wavelength?
The shift in wavelength can be find out using the Compton effect formula. It is given as,
[tex]\Delta \lambda=\dfrac{h}{m_oC}(1-\cos \theta)[/tex]
Here, h is the planks constant (6.63 × 10⁻³⁴ J-s), m₀ is the mass of electron (9.1×10⁻³¹ kg), C is the speed of light (3×10⁸ m/s).
An x-ray photon of wavelength 0. 10 nm is compton-scattered from a free electron.
At the value of cos theta in above formula equal to -1, we get the greatest observed shift in wavelength. Thus, put the values,
[tex]\Delta \lambda=\dfrac{6.63\times10^{-34}}{9.1\times10^{-31}\times3\times10^8}}(1-(-1))\\\Delta \lambda=4.857\times10^{-12}\rm \; m\\\Delta \lambda=0.048\rm\; nm[/tex]
Thus, the greatest observed shift in wavelength, as seen in the scattered photon, when an x-ray photon of wavelength 0. 10 nm is compton-scattered from a free electron is 0.048 nm.
Learn more about the shift in wavelength here;
https://brainly.com/question/23946550
#SPJ4
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.