Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The solid was obtained by rotating the region bounded by x² = 27y, x = 0, and y = 1 about the y-axis is 42.411 cubic units.
What is integration?
It is the reverse of differentiation.
Consider the solid obtained by rotating the region bounded by the given curves about the y-axis.
[tex]\rm x = 3\sqrt{3y} \ or \ x^2 = 27y[/tex]
x = 0, and y = 1
Then the volume of the solid will be
[tex]\rm Volume = \int _{0}^{1} \pi x^2 dy\\\\Volume = \int _{0}^{1} \pi 27y dy\\\\Volume = 27\pi \int _{0}^{1} \ ydy\\\\Volume = 27 \pi [\dfrac{y^2}{2}] _{0}^{1}\\\\[/tex]
[tex]\rm Volume = 13.5 \times \pi \times [y^2] _{0}^{1}\\\\Volume = 13.5 \times \pi \times (1^2 - 0^2)\\\\Volume = 42.411 \ cubic \ units[/tex]
More about the integration link is given below.
https://brainly.com/question/18651211
#SPJ4
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.