Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
If the temperature of the shield is 338 kelvin. Then the heat flux through the tank will be 25.3 Watt per square meter.
What is heat flux?
The increase in heat energy movement through a particular surface is known as heat flux, and the heat flux density is the absolute temperature per unit area.
Assume the view factor between the tank and the shield is unity; all surfaces are diffuse and gray, and the surroundings are at 0 K.
It is given that T= 100 K, ε₁ = ε₂ = 0. 10, [tex]\varepsilon_t[/tex] = 0.20, and GS= 1250 W/m².
Then we have
The temperature of the shield will be
[tex]\rm \alpha _sG_s - \varepsilon _1 E_b (T_s) - \dot{q}_{ST} = 0[/tex] ...1
and
[tex]\rm q''_{12}=\dfrac{ \sigma (T_{1}^{4} - T_{2}^{2})}{\frac{1}{\varepsilon _1 }+ \frac{1}{\varepsilon _2} -1}}[/tex] ...2
Then from equations 1 and 2, we have
[tex]\rm \alpha _sG_s - \varepsilon _1 E_b (T_s) - \dfrac{ \sigma (T_{1}^{4} - T_{2}^{2})}{\frac{1}{\varepsilon _1 }+ \frac{1}{\varepsilon _2} -1}} = 0[/tex]
Then the value of [tex]\rm T_s[/tex] will be
[tex]\rm T_s =\left [ \dfrac{\alpha _sGs+\left ( \dfrac{\sigma T_1^4}{\frac{1}{\varepsilon _1}+\frac{1}{\varepsilon _2} - 1} \right )}{\sigma \left ( \varepsilon _1 + \dfrac{1}{\frac{1}{\varepsilon _1} + \frac{1}{\varepsilon _2}-1} \right )} \right ] ^{\dfrac{1}{4}}[/tex]
Put all the values, then we have
[tex]\rm T_s = \left [ \dfrac{0.05 \times + \left ( \dfrac{\sigma (100)^4}{\frac{1}{0.1}+\frac{1}{0.05}-1} \right )}{\sigma \left ( 0.05 + \dfrac{1}{\frac{1}{0.1}+\frac{1}{0.05} - 1} \right )} \right ]^{\dfrac{1}{4}} \\\\\\T_s = 338 \ K[/tex]
Then the heat flux will be
[tex]\rm q"_{ST}=\dfrac{\sigma (T_S^4 - T_t^4)}{\frac{1}{\varepsilon _1} + \frac{1}{\varepsilon _2} - 1} \\\\\\q"_{ST}=\dfrac{5.67 \times 10^{-8}(388^4-100^4)}{\frac{1}{0.1}+\frac{1}{0.05}-1}\\\\\\q"_{ST} = 25.3 \ W/m^2[/tex]
More about the heat flux link is given below.
https://brainly.com/question/12913016
#SPJ1
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.