At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
If the temperature of the shield is 338 kelvin. Then the heat flux through the tank will be 25.3 Watt per square meter.
What is heat flux?
The increase in heat energy movement through a particular surface is known as heat flux, and the heat flux density is the absolute temperature per unit area.
Assume the view factor between the tank and the shield is unity; all surfaces are diffuse and gray, and the surroundings are at 0 K.
It is given that T= 100 K, ε₁ = ε₂ = 0. 10, [tex]\varepsilon_t[/tex] = 0.20, and GS= 1250 W/m².
Then we have
The temperature of the shield will be
[tex]\rm \alpha _sG_s - \varepsilon _1 E_b (T_s) - \dot{q}_{ST} = 0[/tex] ...1
and
[tex]\rm q''_{12}=\dfrac{ \sigma (T_{1}^{4} - T_{2}^{2})}{\frac{1}{\varepsilon _1 }+ \frac{1}{\varepsilon _2} -1}}[/tex] ...2
Then from equations 1 and 2, we have
[tex]\rm \alpha _sG_s - \varepsilon _1 E_b (T_s) - \dfrac{ \sigma (T_{1}^{4} - T_{2}^{2})}{\frac{1}{\varepsilon _1 }+ \frac{1}{\varepsilon _2} -1}} = 0[/tex]
Then the value of [tex]\rm T_s[/tex] will be
[tex]\rm T_s =\left [ \dfrac{\alpha _sGs+\left ( \dfrac{\sigma T_1^4}{\frac{1}{\varepsilon _1}+\frac{1}{\varepsilon _2} - 1} \right )}{\sigma \left ( \varepsilon _1 + \dfrac{1}{\frac{1}{\varepsilon _1} + \frac{1}{\varepsilon _2}-1} \right )} \right ] ^{\dfrac{1}{4}}[/tex]
Put all the values, then we have
[tex]\rm T_s = \left [ \dfrac{0.05 \times + \left ( \dfrac{\sigma (100)^4}{\frac{1}{0.1}+\frac{1}{0.05}-1} \right )}{\sigma \left ( 0.05 + \dfrac{1}{\frac{1}{0.1}+\frac{1}{0.05} - 1} \right )} \right ]^{\dfrac{1}{4}} \\\\\\T_s = 338 \ K[/tex]
Then the heat flux will be
[tex]\rm q"_{ST}=\dfrac{\sigma (T_S^4 - T_t^4)}{\frac{1}{\varepsilon _1} + \frac{1}{\varepsilon _2} - 1} \\\\\\q"_{ST}=\dfrac{5.67 \times 10^{-8}(388^4-100^4)}{\frac{1}{0.1}+\frac{1}{0.05}-1}\\\\\\q"_{ST} = 25.3 \ W/m^2[/tex]
More about the heat flux link is given below.
https://brainly.com/question/12913016
#SPJ1
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.