Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The radius of Convergence for the function [tex]\frac{\[(-1)^{n} \; x^{n} }{\sqrt[3]{n} }[/tex] is 1.
What is radius of convergence?
The radius of the largest disk at the center of the series in which the series converges.
Perform the ratio test for absolute convergence, which says
if [tex]\lim_{n \to \infty} \frac{a_{n}}{a_{n+1}}[/tex] =L
Then,
1) if L<1, the series is absolutely convergent
2) If L>1, the series is divergent
3) If L= 1, apply a different test.
Now, Applying test
[tex]a_{n+1}[/tex] =[tex]\frac{(-1)^{{n+1} } \; x^{n+1}}{\sqrt[3]{n+1} }[/tex]
So,
[tex]\lim_{n \to \infty} \frac{a_{n+1}}{a_{n}}[/tex] = [tex]\lim_{n \to \infty}|\frac{ (-1)^{{n+1} } \; x^{n+1}/\sqrt[3]{n+1} }{ (-1)^{n} \; x^{n} /\sqrt[3]{n} } |[/tex]
= [tex]\lim_{n \to \infty}|\frac{ (-1)^{{n+1} } \; x^{n+1}\sqrt[3]{n}}{ (-1)^{n} \; x^{n} \sqrt[3]{n+1} } |[/tex]
= [tex]\lim_{n \to \infty}|\frac{ (-1) \; x^{n}\sqrt[3]{n}}{ \sqrt[3]{n+1} } |[/tex]
= [tex]\lim_{n \to \infty}\sqrt[3]{\frac{1}{1+\frac{1}{n}} } } |x|[/tex]
Applying the limit n→∞,
= 1 x |x|
= |x|
By ratio test, the given series will be convergent if |x|< 1.
So, the radius of Convergence = 1
Learn more about radius of Convergence here:
https://brainly.com/question/18763238
#SPJ4
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.