At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The radius of Convergence for the function [tex]\frac{\[(-1)^{n} \; x^{n} }{\sqrt[3]{n} }[/tex] is 1.
What is radius of convergence?
The radius of the largest disk at the center of the series in which the series converges.
Perform the ratio test for absolute convergence, which says
if [tex]\lim_{n \to \infty} \frac{a_{n}}{a_{n+1}}[/tex] =L
Then,
1) if L<1, the series is absolutely convergent
2) If L>1, the series is divergent
3) If L= 1, apply a different test.
Now, Applying test
[tex]a_{n+1}[/tex] =[tex]\frac{(-1)^{{n+1} } \; x^{n+1}}{\sqrt[3]{n+1} }[/tex]
So,
[tex]\lim_{n \to \infty} \frac{a_{n+1}}{a_{n}}[/tex] = [tex]\lim_{n \to \infty}|\frac{ (-1)^{{n+1} } \; x^{n+1}/\sqrt[3]{n+1} }{ (-1)^{n} \; x^{n} /\sqrt[3]{n} } |[/tex]
= [tex]\lim_{n \to \infty}|\frac{ (-1)^{{n+1} } \; x^{n+1}\sqrt[3]{n}}{ (-1)^{n} \; x^{n} \sqrt[3]{n+1} } |[/tex]
= [tex]\lim_{n \to \infty}|\frac{ (-1) \; x^{n}\sqrt[3]{n}}{ \sqrt[3]{n+1} } |[/tex]
= [tex]\lim_{n \to \infty}\sqrt[3]{\frac{1}{1+\frac{1}{n}} } } |x|[/tex]
Applying the limit n→∞,
= 1 x |x|
= |x|
By ratio test, the given series will be convergent if |x|< 1.
So, the radius of Convergence = 1
Learn more about radius of Convergence here:
https://brainly.com/question/18763238
#SPJ4
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.