Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The unit tangent vector is T(u) and the unit normal vector is N(t) if the vector function. R(t) is equal to 9 2 t, e9t, e−9t.
What is vector?
It is defined as the quantity that has magnitude as well as direction also the vector always follows the sum triangle law.
We have vectored function:
[tex]\rm R(t) = (9\sqrt{2t}, e^{9t}, e^{-9t})[/tex]
Find its derivative:
[tex]\rm R'(t) = (9\sqrt{2}, 9e^{9t}, -9e^{-9t})[/tex]
Now its magnitude:
[tex]\rm |R'(t) |= \sqrt{(9\sqrt{2})^2+ (9e^{9t})^2+ (-9e^{-9t})^2}[/tex]
After simplifying:
[tex]\rm R'(t) = 9 \dfrac{e^{18t}+1}{e^{9t}}[/tex]
Now the unit tangent is:
[tex]\rm T(u) = \dfrac{R'(t)}{|R'(t)|}[/tex]
After dividing and simplifying, we get:
[tex]\rm T(u) = \dfrac{1}{e^{18t}+1} (\sqrt{2}e^{9t}, e^{18t}, -1)[/tex]
Now, finding the derivative of T(u), we get:
[tex]\rm T'(u) = \dfrac{1}{(e^{18t}+1)^2} (9\sqrt{2}e^{9t}(1-e^{18t}), 18e^{18t}, 18e^{18t})[/tex]
Now finding its magnitude:
[tex]\rm |T'(u) |= \dfrac{1}{(e^{18t}+1)^2} (9\sqrt{2}e^{9t}(1-e^{18t})^2+ (18e^{18t})^2+( 18e^{18t})^2)[/tex]
After simplifying, we get:
[tex]\rm |T'(u)|= \dfrac{9\sqrt{2}e^{9t}}{e^{18t}+1}[/tex]
Now for the normal vector:
Divide T'(u) and |T'(u)|
We get:
[tex]\rm N(t) = \dfrac{1}{e^{18t}+1} ( 1-e^{18t}, \sqrt{2}e^{9t}, \sqrt{2}e^{9t})[/tex]
Thus, the unit tangent vector is T(u) and the unit normal vector is N(t) if the vector function. R(t) is equal to 9 2 t, e9t, e−9t.
Learn more about the vector here:
https://brainly.com/question/8607618
#SPJ4
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.