Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The value of the integral is 343π/3 by changing to polar coordinates. √(49 − x2 − y2) dA where r = (x, y) | x2 y2 ≤ 49, x ≥ 0
What is integration?
It is defined as the mathematical calculation by which we can sum up all the smaller parts into a unit.
We have the integral:
[tex]\int\limits \int\limits_R {\sqrt{49-x^2-y^2}} \, dA[/tex]
Where, r = (x, y) | x2 y2 ≤ 49, x ≥ 0
The polar coordinate will be:
x = rcosθ
y = rsinθ
Where x²+y²= r²
Put the value of x and y in the integral, and the limits will be:
r²≤49 or 0≤r≤7, -π/2≤θ≤π/2 ( since x ≥0)
dA = rdrdθ
[tex]\int\limits \int\limits_R {\sqrt{49-x^2-y^2}} \, dA = \int\limits^{\dfrac{\pi}{2}}_{\dfrac{-\pi}{2}} \int\limits^7_0 {\sqrt{49-r^2]} \, rdrd\theta[/tex]
After solving the double integration, we will get:
[tex]\int\limits \int\limits_R {\sqrt{49-x^2-y^2}} \, dA = \dfrac{343}{3} \pi[/tex]
Thus, the value of the integral is 343π/3 by changing to polar coordinates. √(49 − x2 − y2) dA where r = (x, y) | x2 y2 ≤ 49, x ≥ 0
Learn more about integration here:
brainly.com/question/18125359
#SPJ4
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.