Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The minima of the quadratic function is at the vertex, it is at (2, -4).
Where are the relative minima/maxima of the function?
First, we can see that our function is a quadratic function of positive leading coefficient. So it opens upwards.
Then we will only have a minima, which is located in the vertex of the parabola.
Remember that for:
y = a*x^2 + b*x + c
The x-value of the vertex is h = -b/2a
Then for g(x) = x^2 - 4x we have:
h = -(-4)/2*1 = 2
And the y-value of the vertex is:
g(2) = 2^2 - 4*2 = -4
Meaning that the minima of the function g(x) is (2, -4).
If you want to learn more about quadratic functions:
https://brainly.com/question/1214333
#SPJ1
The exact location of all the relative and absolute extrema of the function is (2, -4).
Where are the relative minima/maxima of the function?
First, we can see that our function is a quadratic function of the positive leading coefficient.
Then we will only have a minimum, which is located in the vertex of the parabola.
The equation of the parabola is;
[tex]\rm y = ax^2 + bx + c[/tex]
The x-value of the vertex is h = -b/2a
Then for g(x) = x^2 - 4x we have:
h = -(-4)/2*1 = 2
And the y-value of the vertex is:
g(2) = 2^2 - 4*2 = -4
Meaning that the minima of the function g(x) are (2, -4).
Hence, the exact location of all the relative and absolute extrema of the function is (2, -4).
Learn more about quadratic functions:
brainly.com/question/1214333
#SPJ4
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.