Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
the largest number that is less than (2+√3)^6 is 2701
Step-by-step explanation:
[tex]\bigstar \ (2+\sqrt{3})^6= \\\\C{}^{0}_{6}2^{6}+C{}^{1}_{6}2^{5}\sqrt{3}^1+C{}^{2}_{6}2^{4}\sqrt{3}^2+C{}^{3}_{6}2^{3}\sqrt{3}^3+C{}^{4}_{6}2^{2}\sqrt{3}^4+C{}^{5}_{6}2^{1}\sqrt{3}^5+C{}^{6}_{6}\sqrt{3}^6[/tex]
[tex]=64+192\sqrt{3}+720 +480\sqrt{3} +540+108\sqrt{3} +27\\=1351+780\sqrt{3}[/tex]
[tex]\bigstar\ (2-\sqrt{3} )^6 =\\\\1351-780\sqrt{3}[/tex]
[tex]\bigstar\ \bigstar\ (2+\sqrt{3} )^6+(2-\sqrt{3} )^6 =\\\\1351+780\sqrt{3}+1351-780\sqrt{3}[/tex]
[tex]\Longrightarrow(2+\sqrt{3} )^6+(2-\sqrt{3} )^6 =2702[/tex]
[tex]\Longrightarrow(2+\sqrt{3} )^6 =2702-(2-\sqrt{3} )^6[/tex]
[tex]0 < \left( 2-\sqrt{3} \right) < 1 \Longrightarrow 0 < \left( 2-\sqrt{3} \right)^{6} < 1 \Longrightarrow-1 < \left( 2-\sqrt{3} \right)^{6} < 0[/tex]
[tex]\Longrightarrow2702-1 < 2702-\left( 2-\sqrt{3} \right)^{6} < 2702+0[/tex]
[tex]\Longrightarrow 2701 < \left( 2+\sqrt{3} \right)^{6} < 2702[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.