Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Using the Fundamental Counting Theorem, it is found that Kami could create 40,000 codes that start with an even number.
What is the Fundamental Counting Theorem?
It is a theorem that states that if there are n things, each with [tex]n_1, n_2, \cdots, n_n[/tex] ways to be done, each thing independent of the other, the number of ways they can be done is:
[tex]N = n_1 \times n_2 \times \cdots \times n_n[/tex]
In this problem:
- The first digit has to be even, that is, 2, 4, 6 or 8, hence [tex]n_1 = 4[/tex].
- For the remaining digits there are 10 outcomes for each.
Hence:
[tex]N = 4 \times 10^4 = 40000[/tex]
Kami could create 40,000 codes that start with an even number.
More can be learned about the Fundamental Counting Theorem at https://brainly.com/question/24314866
#SPJ1
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.