Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
- See below
Step-by-step explanation:
The x-intercepts are the points with y- coordinate of 0
- (x - 3)(x + 8) = 0
- x - 3 = 0 or x + 8 = 0
- x = 3 or x = - 8
a) x-intercepts are
- 3 and - 8
b) midpoint of x-intercepts is
- (3 - 8)/2 = - 5/2 = - 2.5
c) The extheme value has x- coordinate of - 2.5 and y- coordinate
- (-2.5 - 3)(- 2.5 + 8) = (-5.5)(5.5) = - 30.25
d) f(- 2.5) = - 30.25
Answer:
[tex]\sf a) \quad x = -8 \:\:and \:\:x = 3[/tex]
[tex]\sf b) \quad \left(-\dfrac{5}{2},0\right)[/tex]
[tex]\sf c) \quad \left(-\dfrac{5}{2},-\dfrac{121}{4}\right)[/tex]
[tex]\sf d) \quad f(x)=\left(x+\dfrac{5}{2}\right)^2-\dfrac{121}{4}[/tex]
Step-by-step explanation:
Part (a)
The x-intercepts are the x-values when the curve crosses the x-axis, so when the function is equal to zero:
[tex]\implies f(x)=0[/tex]
[tex]\implies (x-3)(x+8)=0[/tex]
Therefore:
[tex](x-3)=0 \implies x=3[/tex]
[tex](x+8)=0 \implies x=-8[/tex]
Therefore, the x-intercepts are x = -8 and x = 3
Part (b)
[tex]\textsf{Midpoint}=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)\quad \textsf{where}\:(x_1,y_1)\:\textsf{and}\:(x_2,y_2)\:\textsf{are the endpoints}}\right)[/tex]
[tex]\sf \implies Midpoint=\left(\dfrac{-8+3}{2},\dfrac{0+0}{2}\right)=\left(-\dfrac{5}{2},0\right)[/tex]
Therefore, the midpoint of the x-intercepts is (-5/2, 0)
Part (c)
The extreme value is the vertex. The vertex is:
- the minimum point if the parabola opens upwards
- the maximum point if the parabola open downwards
The x-coordinate of the vertex is the x-value of the midpoint of the x-intercepts. Therefore, the x-value of the extreme value is x = -5/2.
To find the y-coordinate, substitute this into the given equation:
[tex]\implies \sf y=\left(-\dfrac{5}{2}-3\right)\left(-\dfrac{5}{2}+8\right)=-\dfrac{121}{4}[/tex]
Therefore, the extreme value is:
[tex]\sf \left(-\dfrac{5}{2},-\dfrac{121}{4}\right)[/tex]
Part (d)
The function in vertex form is:
[tex]\sf f(x)=\left(x+\dfrac{5}{2}\right)^2-\dfrac{121}{4}[/tex]
[tex]\begin{aligned}\implies \sf f\left(-\dfrac{5}{2}\right)& = \sf \left(-\dfrac{5}{2}+\dfrac{5}{2}\right)^2-\dfrac{121}{4}\\\\ & = \sf 0 -\dfrac{121}{4}\\\\ & = \sf -\dfrac{121}{4} \end{aligned}[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.