Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
According to the Empirical Rule (68-95-99.7% Rule), approximately 68% percent of the values will be between 75 and 85.
What is empirical rule?
According to the empirical rule, also known as 68-95-99.7 rule, the percentage of values that lie within an interval with 68%, 95% and 99.7% of the values lies within one, two or three standard deviations of the mean of the distribution.
[tex]P(\mu - \sigma < X < \mu + \sigma) = 68\%\\P(\mu - 2\sigma < X < \mu + 2\sigma) = 95\%\\P(\mu - 3\sigma < X < \mu + 3\sigma) = 99.7\%[/tex]
Here, we had where mean of distribution of X is [tex]\mu[/tex] and standard deviation from mean of distribution of X is [tex]\sigma[/tex].
A distribution of scores on an aptitude test is Normally distributed with a mean of 80 and a standard deviation of 5.
[tex]\mu=80\\\sigma=5[/tex]
The percentage for the interval of values between 75 and 85 has to be found out. From the 68%, the interval is,
[tex]P(\mu - \sigma < X < \mu + \sigma) = 68\%\\P(80 - 5 < X < 80+ 5) = 68\%\\P(75 < X < 85) = 68\%[/tex]
Thus, according to the Empirical Rule (68-95-99.7% Rule), approximately 68% percent of the values will be between 75 and 85.
Learn more about empirical rule here:
https://brainly.com/question/13676793
#SPJ1
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.