Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Using the ideal gas law PV =nRTPV=nRT , we find that the pressure will be P =\frac{nRT}{V}P=
V
nRT
. Then, we'll substitute and find the pressure, using T = -25 °C = 248.15 K and R = 0.0821 \frac{atm\cdot L}{mol \cdot K}
mol⋅K
atm⋅L
:
P =\frac{nRT}{V} = \frac{(0.33\,\cancel{mol})(0.0821\frac{atm\cdot \cancel{L}}{\cancel{mol \cdot K}})(248.15\,\cancel{K})}{15.0\,\cancel{L}} = 0.4482\,atmP=
V
nRT
=
15.0
L
(0.33
mol
)(0.0821
mol⋅K
atm⋅
L
)(248.15
K
)
=0.4482atm
In conclusion, the pressure of this gas is P=0.4482 atm.
Reference:
Chang, R. (2010). Chemistry. McGraw-Hill, New York.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.