Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Using the normal distribution, it is found that there is a 0.0436 = 4.36% probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
In this problem, the mean and the standard deviation are given, respectively, by:
[tex]\mu = 2.8, \sigma = 0.7[/tex].
The probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters is one subtracted by the p-value of Z when X = 4, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{4 - 2.8}{0.7}[/tex]
Z = 1.71
Z = 1.71 has a p-value of 0.9564.
1 - 0.9564 = 0.0436.
0.0436 = 4.36% probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters.
More can be learned about the normal distribution at https://brainly.com/question/24663213
#SPJ1
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.