Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The quotient of dividing (3x⁴ - 2x³ + 7x² - 4) by (x - 3) is 3x³ + 7x² + 28x + 84 and the remainder is 248
How to determine the quotient and the remainder?
The division expression is given as:
(3x⁴ - 2x³ + 7x² - 4) / (x - 3)
Set the divisor to 0
x - 3 = 0
Solve for x
x = 3
Substitute x = 3 in 3x⁴ - 2x³ + 7x² - 4
3x⁴ - 2x³ + 7x² - 4 = 3(3)⁴ - 2(3)³ + 7(3)² - 4
Evaluate
3x⁴ - 2x³ + 7x² - 4 = 248
This means that the remainder is 248
Recall that:
Dividend = Divisor * Quotient + Remainder
So, we have:
3x⁴ - 2x³ + 7x² - 4 = x - 3 * Q + 248
Subtract 248 from both sides
3x⁴ - 2x³ + 7x² - 252 = x - 3 * Q
Divide both sides by x - 3
Q = (3x⁴ - 2x³ + 7x² - 252)/(x - 3)
Factorize the numerator
Q = (x - 3)(3x³ + 7x² + 28x + 84)/(x - 3)
Cancel out the common factors
Q = 3x³ + 7x² + 28x + 84
Hence, the quotient is 3x³ + 7x² + 28x + 84 and the remainder is 248
Read more about polynomial division at:
https://brainly.com/question/25289437
#SPJ1
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.