Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

A manufacturer sells mirrors in the shapes of squares. The smallest size mirror the manufacturer sells has an area of 4 ft ^2. The largest size mirror has an area of 9 ft^2.

which graph represents the possible side lengths of the mirror sold by the manufacturer.


Sagot :

The domain of the graph of the that represents the side length of the mirror is 2 ≤ x ≤3

How to determine the graph?

The given parameters are:

  • Shape = Square
  • Smallest area = 4ft²
  • Largest area = 9ft²

The area (y) of a square of side length x is:

y = x²

Make x the subject

x = √y

When y = 9, we have:

x = √9 = 3

When y = 4, we have:

x = √4 = 2

This means that the domain of the graph of the that represents the side length of the mirror is 2 ≤ x ≤3

See attachment for the graph

Read more about graphs at:

https://brainly.com/question/4025726

#SPJ1

View image MrRoyal