Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Identify the letter of the choice that best completes the statement or answers the question. How many different arrangements can be made using all of the letters in the word TOPIC? a. 20 c. 120 b. 10 d. 25 Please select the best answer from the choices provided A B C D

Sagot :

Using the arrangements formula, it is found that the number of different arrangements that can be made using all of the letters of TOPIC is given by:

c. 120

What is the arrangements formula?

The number of possible arrangements of n elements is given by the factorial of n, that is:

[tex]A_n = n![/tex]

In this problem, the word TOPIC has 5 non-repeating letters, hence the number of arrangements is given by:

[tex]A_5 = 5! = 120[/tex].

Which means that option C is correct.

More can be learned about the arrangements formula at https://brainly.com/question/25925367

#SPJ1

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.