Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

What is Limit of (3 x minus 3) Superscript five-halves Baseline as x approaches 4? RootIndex 5 StartRoot 31 EndRoot RootIndex 5 StartRoot 92 EndRoot 15 243

Sagot :

I assume your limit is

[tex]\displaystyle \lim_{x\to4} (3x-3)^{5/2}[/tex]

Recall that [tex]\sqrt x = x^{1/2}[/tex] is defined and continuous for all x ≥ 0, so the limand in this case is continuous for all 3x - 3 ≥ 0 or x ≥ 1. Then we can evaluate the limit by directly substituting x = 4 :

[tex]\displaystyle \lim_{x\to4}(3x-3)^{5/2} = \left(3\lim_{x\to4}(x-1)\right)^{5/2} = \left(3^2\right)^{5/2} = 3^5 = \boxed{243}[/tex]

The Limit of (3 x minus 3) Superscript five-halves Baseline as x approaches 4 is 243.

What Is The Limit?

A limit is a value that the given function approaches as the input value approaches to some value. Limits are essential to calculus and mathematical analysis and are used to define continuity, derivatives, and integrals.

Finding the limits:

We have;

[tex]\lim_{x \to 4} (3x-3)^{5/2} \\ \lim_{x \to 4} 3(x-1)^{5/2}\\3 \lim_{x \to 4} (x-1)^{5/2}\\3(3)^{5/2}\\=243.[/tex]

Learn more about limits:

https://brainly.com/question/13027658

#SPJ2