Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
b=(7-sqrd85/6), b=(7+sqrd85/6)
Step-by-step explanation:
3b^2-7b+3=6
3b^2-7b+3-6=0
3b^2-7b-3=0
a=3, b=-7, c=-3
b=7+-sqrd49+36/6
b=(7-sqrd85/6), b=(7+sqrd85/6)
Answer:
[tex]\displaystyle \frac{7 + \sqrt{85}}{6}[/tex] and [tex]\displaystyle \frac{7 - \sqrt{85}}{6}[/tex].
Step-by-step explanation:
(Replace [tex]b[/tex] with [tex]x[/tex] to avoid confusion with symbols in the quadratic equation.)
Notice that the equation [tex]3\, x^{2} - 7\, x + 3 = 6[/tex] is quadratic with respect to the unknown [tex]x[/tex]. Rewrite the equation in standard form [tex]a\, x^{2} + b\, x + c = 0[/tex] before applying the quadratic equation:
[tex]3\, x^{2} - 7\, x + 3 = 6[/tex].
[tex]3\, x^{2} - 7\, x + 3 - 6 = 0[/tex].
[tex]3\, x^{2} + (- 7)\, x + (-3) = 0[/tex].
Thus, for the quadratic equation, [tex]a = 3[/tex], [tex]b = (-7)[/tex], and [tex]c = (-3)[/tex]. Apply the quadratic equation to find the solutions:
[tex]\begin{aligned}x &= \frac{-\, b + \sqrt{b^{2} - 4\, a\, c}}{2\, a} \\ &= \frac{-(-7) + \sqrt{(-7)^{2} - 4 \times 3 \times (-3)}}{2 \times 3} \\ &= \frac{7 + \sqrt{85}}{6}\end{aligned}[/tex].
[tex]\begin{aligned}x &= \frac{-\, b - \sqrt{b^{2} - 4\, a\, c}}{2\, a} \\ &= \frac{-(-7) - \sqrt{(-7)^{2} - 4 \times 3 \times (-3)}}{2 \times 3} \\ &= \frac{7 - \sqrt{85}}{6}\end{aligned}[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.