Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Calculate the total area of the shaded region.
-x^2+3x
2x^3-x^2-5x

Refer to the picture posted below.


Calculate The Total Area Of The Shaded Region X23x 2x3x25x Refer To The Picture Posted Below class=

Sagot :

so hmmm seemingly the graphs meet at -2 and +2 and 0, let's check

[tex]\stackrel{f(x)}{2x^3-x^2-5x}~~ = ~~\stackrel{g(x)}{-x^2+3x}\implies 2x^3-5x=3x\implies 2x^3-8x=0 \\\\\\ 2x(x^2-4)=0\implies x^2=4\implies x=\pm\sqrt{4}\implies x= \begin{cases} 0\\ \pm 2 \end{cases}[/tex]

so f(x) = g(x) at those points, so let's take the integral of the top - bottom functions for both intervals, namely f(x) - g(x) from -2 to 0 and g(x) - f(x) from 0 to +2.

[tex]\stackrel{f(x)}{2x^3-x^2-5x}~~ - ~~[\stackrel{g(x)}{-x^2+3x}]\implies 2x^3-x^2-5x+x^2-3x \\\\\\ 2x^3-8x\implies 2(x^3-4x)\implies \displaystyle 2\int\limits_{-2}^{0} (x^3-4x)dx \implies 2\left[ \cfrac{x^4}{4}-2x^2 \right]_{-2}^{0}\implies \boxed{8} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\stackrel{g(x)}{-x^2+3x}~~ - ~~[\stackrel{f(x)}{2x^3-x^2-5x}]\implies -x^2+3x-2x^3+x^2+5x \\\\\\ -2x^3+8x\implies 2(-x^3+4x) \\\\\\ \displaystyle 2\int\limits_{0}^{2} (-x^3+4x)dx \implies 2\left[ -\cfrac{x^4}{4}+2x^2 \right]_{0}^{2}\implies \boxed{8} ~\hfill \boxed{\stackrel{\textit{total area}}{8~~ + ~~8~~ = ~~16}}[/tex]