At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Using the binomial distribution, it is found that the probability she will hit at least one balloon with her five darts is:
(1) 41%.
What is the binomial distribution formula?
The formula is:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem, we have that:
- The probability of a single dart hitting is of p = 1/10 = 0.1.
- She will throw five darts, hence n = 5.
The probability of hitting at least one is given by:
[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]
In which:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{5,0}.(0.1)^{0}.(0.9)^{5} = 0.59[/tex]
Then:
[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.59 = 0.41[/tex]
Which means that option 1 is correct.
More can be learned about the binomial distribution at https://brainly.com/question/24863377
#SPJ1
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.