Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Problem 9
r+h = 9
SA = 2*pi*r^2 + 2*pi*r*h = 54pi
2*pi*r^2 + 2*pi*r*h = 54pi
2pi*r(r + h) = 54pi
r(r+h) = 27
r(9) = 27
9r = 27
r = 27/9
r = 3
r+h = 9
h = 9-r
h = 9-3
h = 6
Answers: r = 3 and h = 6 are the radius and height respectively.
==========================================================
Problem 10
d = diameter = 68 mm
r = radius = d/2 = 68/2 = 34 mm
SA = surface area of a sphere
SA = 4*pi*r^2
SA = 4*pi*34^2
SA = 4264pi
Answer: 4264pi square mm
==========================================================
Problem 11
Plug V = 3000 into the sphere volume formula and isolate r.
V = (4/3)pi*r^3
3000 = (4/3)pi*r^3
(4/3)pi*r^3 = 3000
4pi*r^3 = 3*3000
4pi*r^3 = 9000
r^3 = 9000/(4pi)
r = cube root( 9000/(4pi) )
r = ( 9000/(4pi) )^(1/3)
r = 8.947002 approximately
Now we can determine the surface area of this sphere.
SA = 4pi*r^2
SA = 4*pi*( 8.947002 )^2
SA = 1005.923451
Answer: 1005.923451 square feet approximately
==========================================================
Problem 12
We'll follow the same idea as problem 11, but in reverse.
SA = 4*pi*r^2
400pi = 4pi*r^2
r^2 = (400pi)/(4pi)
r^2 = 100
r = sqrt(100)
r = 10
Luckily we get a nice whole number for the radius r. Use it to find the volume.
V = (4/3)*pi*r^3
V = (4/3)*pi*10^3
V = (4000/3)pi
Answer: (4000/3)pi cubic inches exactly
==========================================================
Problem 13
The diagram is missing. I don't have enough info to be able to answer.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.