Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
See Below
Step-by-step explanation:
Since PQ is perpendicular to RS, the angles PQR and PQS would be right angles, and right anglers are congruent, so <PQR ≅ <PQS. We are given that <R and <S are the same length, so they are congruent(<R ≅ <S). Since PQ is included in both triangles and it is the same length as itself(PQ ≅ PQ).
We have three congruent parts, two angles and one side. Therefore, using AAS, ΔPQR ≅ ΔPQS
Answer:
See below ~
Step-by-step explanation:
Given :
⇒ PQ ⊥ RS
⇒ ∠R = ∠S
===============================================================
Solving :
⇒ PQ = PQ (common side)
⇒ ∠R = ∠S (given)
⇒ ∠PQS = ∠PQR = 90° (⊥ bisector forms equal right angles)
⇒ ΔPQR ≅ ΔPQS (by ASA congruence)
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.