Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
A particle moves along line segments from the origin to the points, work done is mathematically given as
W=184.5units
What is the solution of an equation that matches the model.?
Considering line segments from (0,0,0)origin to (2,0,0) , (2,5,1) and (0,5,1) under the infulence of force
Generally, the equation for force is mathematically given as
F = z2i + 5xyj + 2y2k
Therefore, Considering u*v
[tex]u * v = (u_1j+u_2j+u_3k) * (v_1i+v_2j+v_3k)[/tex]
[tex]u* v = u_1v_1(i * i) + u_1v_2(i * j)+u_1v_3(i * k) + u_2v_1(j * i) + u_2v_2(j * j)+u_2_3(j* k) + u_3v_1(k * i) + u_3v_2(k * j)+u_3v_3(k * k)[/tex]
Where
[tex]i * i = j *j=k * k=0[/tex]
Hence
[tex]u* v = u_1v_2k-u_1v_3j-u_2v_1k+u_2v_3i +u_3v_1j - u_3v_2i[/tex]
[tex]u = (u_1,u_2,u_3) = (0,5,1)\\\\v = (v_1,v_2,v_3) = (-3,0,0)[/tex]
The normal equation formed
-2y + 15z = 0
z= (1/5)y
Considering the level surface and differential surface area
h(x,y,z) = -y + 5z =0
[tex]dS = |grad(h)| dA[/tex]
In terms of the x and y coordinates of (2,0,0) and (2,5,1) and (0,5,1), we can state that the ranges are 0 to 3 and 5 respectively we have
[tex]0 \leq x \leq 2 \ and \ 0 \leq y \leq 5[/tex]
Using strokes theorem to evaluate
[tex]F = z2i + 5xyj + 2y2k[/tex]
[tex]curl \ F = 4yi+2zj+5yk = (4y,2z,5y)[/tex]
[tex]curl \ F * nds= \frac{1}{5}(-2z + 25y)\ dy \ dx[/tex]
In conclusion, The work done is
[tex]W=\int _CF *dr[/tex]
[tex]\int _C F * dr = \int \int curl \ F * n ds[/tex]
[tex]\int _C F *dr = \frac{123}{2}\int_0^3 \ dx[/tex]
[tex]\int _C F * dr = \frac{123*3}{2}[/tex]
W= 184.5units
Read more about work done
https://brainly.com/question/25573309
#SPJ1
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.