Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

If sin A = 4/5 find the value of cot A + tan A.​

Sagot :

Answer:

2.08

Step-by-step explanation:

[tex]sin^{-1} 4/5 = 53.13\\tan 53.13 = 1.33\\cot 53.13 = 0.75\\1.33 + 0.775 = 2.08[/tex]

Answer:

The answer is 2

Step-by-step explanation:

[tex]Cot(x)=\frac{1}{tan(x)} =\frac{Cos(x)}{Sin(x)}[/tex]

[tex]Tan(x) = \frac{Sin(x)}{Cos(x)}[/tex]

[tex]Cos(\frac{\pi }{2} -x)=sin(x)[/tex]

This means that
[tex]\frac{\cos \left(\frac{\pi }{2}-\frac{4}{5}\right)}{\sin \left(\frac{4}{5}\right)}+\frac{\sin \left(\frac{4}{5}\right)}{\cos \left(\frac{\pi }{2}-\frac{4}{5}\right)}[/tex]

This will be a long one to solve
-> apply cos identity to right side

[tex]\frac{\cos \left(\frac{\pi }{2}-\frac{4}{5}\right)}{\sin \left(\frac{4}{5}\right)}+\frac{\sin \left(\frac{4}{5}\right)}{\cos \left(\frac{\pi }{2}\right)\cos \left(\frac{4}{5}\right)+\sin \left(\frac{\pi }{2}\right)\sin \left(\frac{4}{5}\right)}[/tex]

-> simplify according to unit circle

[tex]\frac{\cos \left(\frac{\pi }{2}-\frac{4}{5}\right)}{\sin \left(\frac{4}{5}\right)}+1[/tex]

->apply cos identity again

[tex]\frac{\cos \left(\frac{\pi }{2}\right)\cos \left(\frac{4}{5}\right)+\sin \left(\frac{\pi }{2}\right)\sin \left(\frac{4}{5}\right)}{\sin \left(\frac{4}{5}\right)}+1[/tex]

If you apply for unit circle numbers,

you will get 2

I do not recommend using a calculator for these questions, but instead, turn the form into [tex]sin\frac{\pi }{2}[/tex] other base unit circle locations, and most likely this is the method that your teacher counts as "right."
when using a calculator, it tends to "round" the number, which result in a inaccurate answer