Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Remember Coulomb's law: the magnitude of the electric force F between two stationary charges q₁ and q₂ over a distance r is
[tex]F = \dfrac{kq_1q_2}{r^2}[/tex]
where k ≈ 8,98 × 10⁹ kg•m³/(s²•C²) is Coulomb's constant.
8.1. The diagram is simple, since only two forces are involved. The particle at Q₂ feels a force to the left due to the particle at Q₁ and a downward force due to the particle at Q₃.
8.2. First convert everything to base SI units:
0,02 µC = 0,02 × 10⁻⁶ C = 2 × 10⁻⁸ C
0,03 µC = 3 × 10⁻⁸ C
0,04 µC = 4 × 10⁻⁸ C
300 mm = 300 × 10⁻³ m = 0,3 m
600 mm = 0,6 m
Force due to Q₁ :
[tex]F_{Q_2/Q_1} = \dfrac{k (6 \times 10^{-16} \,\mathrm C)}{(0,3 \, \mathrm m)^2} \approx \boxed{6,0 \times 10^{-5} \,\mathrm N} = 0,06 \,\mathrm{mN}[/tex]
Force due to Q₃ :
[tex]F_{Q_2/Q_3} = \dfrac{k (12 \times 10^{-16} \,\mathrm C)}{(0,6 \, \mathrm m)^2} \approx \boxed{3,0 \times 10^{-5} \,\mathrm N} = 0,03 \,\mathrm{mN}[/tex]
8.3. The net force on the particle at Q₂ is the vector
[tex]\vec F = F_{Q_2/Q_1} \, \vec\imath + F_{Q_2/Q_3} \,\vec\jmath = \left(-0,06\,\vec\imath - 0,03\,\vec\jmath\right) \,\mathrm{mN}[/tex]
Its magnitude is
[tex]\|\vec F\| = \sqrt{\left(-0,06\,\mathrm{mN}\right)^2 + \left(-0,03\,\mathrm{mN}\right)^2} \approx 0,07 \,\mathrm{mN} = \boxed{7,0 \times 10^{-5} \,\mathrm N}[/tex]
and makes an angle θ with the positive horizontal axis (pointing to the right) such that
[tex]\tan(\theta) = \dfrac{-0,03}{-0,06} \implies \theta = \tan^{-1}\left(\dfrac12\right) - 180^\circ \approx \boxed{-153^\circ}[/tex]
where we subtract 180° because [tex]\vec F[/tex] terminates in the third quadrant, but the inverse tangent function can only return angles between -90° and 90°. We use the fact that tan(x) has a period of 180° to get the angle that ends in the right quadrant.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.