Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

(7)Figure 4 shows three charges: Q₁, Q₂ and Q3 . Determine the net force (Fnet) acting on Q3. (Hint: Draw a free body diagram of the forces to assist you with the calculation.)

(8)Figure 5 shows three charges arranged in a right angled formation.

(8.1)Draw a free body diagram of the forces that act on the -0,03 uC charge.

(8.2)Calculate each force that acts on the -0,03 uC charge.

(8.3) Find the magnitude and direction of the net force that acts on the 0,03 μC charge with the aid of a diagram and by calculations.

Help Please.​


7Figure 4 Shows Three Charges Q Q And Q3 Determine The Net Force Fnet Acting On Q3 Hint Draw A Free Body Diagram Of The Forces To Assist You With The Calculatio class=

Sagot :

Remember Coulomb's law: the magnitude of the electric force F between two stationary charges q₁ and q₂ over a distance r is

[tex]F = \dfrac{kq_1q_2}{r^2}[/tex]

where k ≈ 8,98 × 10⁹ kg•m³/(s²•C²) is Coulomb's constant.

8.1. The diagram is simple, since only two forces are involved. The particle at Q₂ feels a force to the left due to the particle at Q₁ and a downward force due to the particle at Q₃.

8.2. First convert everything to base SI units:

0,02 µC = 0,02 × 10⁻⁶ C = 2 × 10⁻⁸ C

0,03 µC = 3 × 10⁻⁸ C

0,04 µC = 4 × 10⁻⁸ C

300 mm = 300 × 10⁻³ m = 0,3 m

600 mm = 0,6 m

Force due to Q₁ :

[tex]F_{Q_2/Q_1} = \dfrac{k (6 \times 10^{-16} \,\mathrm C)}{(0,3 \, \mathrm m)^2} \approx \boxed{6,0 \times 10^{-5} \,\mathrm N} = 0,06 \,\mathrm{mN}[/tex]

Force due to Q₃ :

[tex]F_{Q_2/Q_3} = \dfrac{k (12 \times 10^{-16} \,\mathrm C)}{(0,6 \, \mathrm m)^2} \approx \boxed{3,0 \times 10^{-5} \,\mathrm N} = 0,03 \,\mathrm{mN}[/tex]

8.3. The net force on the particle at Q₂ is the vector

[tex]\vec F = F_{Q_2/Q_1} \, \vec\imath + F_{Q_2/Q_3} \,\vec\jmath = \left(-0,06\,\vec\imath - 0,03\,\vec\jmath\right) \,\mathrm{mN}[/tex]

Its magnitude is

[tex]\|\vec F\| = \sqrt{\left(-0,06\,\mathrm{mN}\right)^2 + \left(-0,03\,\mathrm{mN}\right)^2} \approx 0,07 \,\mathrm{mN} = \boxed{7,0 \times 10^{-5} \,\mathrm N}[/tex]

and makes an angle θ with the positive horizontal axis (pointing to the right) such that

[tex]\tan(\theta) = \dfrac{-0,03}{-0,06} \implies \theta = \tan^{-1}\left(\dfrac12\right) - 180^\circ \approx \boxed{-153^\circ}[/tex]

where we subtract 180° because [tex]\vec F[/tex] terminates in the third quadrant, but the inverse tangent function can only return angles between -90° and 90°. We use the fact that tan(x) has a period of 180° to get the angle that ends in the right quadrant.

Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.