Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Based on the calculations, the distance to the horizon (H) from this point is equal to 208.8 miles.
How to calculate the distance to the horizon?
Based on the diagram attached in the image below, a triangle with the center of planet Earth (C) at one point is formed, with the horizon (H) and the top of Mt. Everest (O) as the other points.
In accordance with Pythagorean theorem, we would set up an equation from the right-angle triangle (CHO) as follows:
d² + r² = (r + h)²
d² + 3959² = (3959 + 5.5)²
d² + 15,673,681 = 3964.5²
d² + 15,673,681 = 15,717,260
d² = 15,717,260 - 15,673,681
d² = 43,579
d = √43,579
Distance, d = 208.8 miles.
Read more on Pythagorean theorem here: https://brainly.com/question/23200848
#SPJ1
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.