Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Using the combination formula, it is found that there are 47,040 ways to form a soccer team.
What is the combination formula?
Each of the different groups or selections can be formed by taking some or all of a number of objects, irrespective of their arrangments is called a combination.
[tex]^mC_k = \dfrac{m!}{k! \times (m-k)!}[/tex]
A soccer team consisting of 3 forwards, 4 midfield players, and 3 defensive players, if the players are chosen from 8 forwards, 6 midfield players and 8 defensive players
Since they are independent of each other, the total number of combinations will be;
[tex]^mC_k = \dfrac{8!}{3! \times (5)!} \times \dfrac{6!}{4! \times (2)!} \times \dfrac{8!}{3! \times (5)!} \\\\^mC_k =47,040[/tex]
Hence, There are 47,040 ways to form a soccer team.
More can be learned about the combination at brainly.com/question/25821700
#SPJ1
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.