Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Given function:
[tex]f(x)=2(3)^x[/tex]
Part A
The average rate of change of function f(x) over the interval a ≤ x ≤ b is given by:
[tex]\dfrac{f(b)-f(a)}{b-a}[/tex]
[tex]\begin{aligned}\textsf{Average rate of change - Section A} & =\dfrac{f(1)-f(0)}{1-0}\\\\& =\dfrac{2(3)^1-2(3)^0}{1-0}\\\\& =\dfrac{6-2}{1}\\\\& =4 \end{aligned}[/tex]
[tex]\begin{aligned}\textsf{Average rate of change - Section B} & =\dfrac{f(3)-f(2)}{3-2}\\\\& =\dfrac{2(3)^3-2(3)^2}{3-2}\\\\& =\dfrac{54-18}{1}\\\\& =36 \end{aligned}[/tex]
Part B
[tex]\dfrac{\textsf{Average rate of change of Section B}}{\textsf{Average rate of change of Section A}}=\dfrac{36}{4}=9[/tex]
Therefore, the average rate of change of Section B is 9 times greater than Section A.
The function is an exponential function (with 3 as the growth factor) so the rate of change increases over time.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.