Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
hope this helps and if you have any questions please feel free to ask me any time
![View image ciarajones205089](https://us-static.z-dn.net/files/d0e/37303514870caea992dbc67708a60785.jpg)
![View image ciarajones205089](https://us-static.z-dn.net/files/da0/efea331cb9cc3053adbd717d78e0465b.jpg)
Statement :- We assume the orthagonal sequence [tex]{{\{\phi\}}_{1}^{\infty}}[/tex] in Hilbert space, now [tex]{\forall \sf \:v\in \mathbb{V}}[/tex], the Fourier coefficients are given by:
[tex]{\quad \qquad \longrightarrow \sf a_{i}=(v,{\phi}_{i})}[/tex]
Then Bessel's inequality give us:
[tex]{\boxed{\displaystyle \bf \sum_{1}^{\infty}\vert a_{i}\vert^{2}\leqslant \Vert v\Vert^{2}}}[/tex]
Proof :- We assume the following equation is true
[tex]{\quad \qquad \longrightarrow \displaystyle \sf v_{n}=\sum_{i=1}^{n}a_{i}{\phi}_{i}}[/tex]
So that, [tex]{\bf v_n}[/tex] is projection of [tex]{\bf v}[/tex] onto the surface by the first [tex]{\bf n}[/tex] of the [tex]{\bf \phi_{i}}[/tex] . For any event, [tex]{\sf (v-v_{n})\perp v_{n}}[/tex]
Now, by Pythagoras theorem:
[tex]{:\implies \quad \sf \Vert v\Vert^{2}=\Vert v-v_{n}\Vert^{2}+\Vert v_{n}\Vert^{2}}[/tex]
[tex]{:\implies \quad \displaystyle \sf ||v||^{2}=\Vert v-v_{n}\Vert^{2}+\sum_{i=1}^{n}\vert a_{i}\vert^{2}}[/tex]
Now, we can deduce that from the above equation that;
[tex]{:\implies \quad \displaystyle \sf \sum_{i=1}^{n}\vert a_{i} \vert^{2}\leqslant \Vert v\Vert^{2}}[/tex]
For [tex]{\sf n\to \infty}[/tex], we have
[tex]{:\implies \quad \boxed{\displaystyle \bf \sum_{1}^{\infty}\vert a_{i}\vert^{2}\leqslant \Vert v\Vert^{2}}}[/tex]
Hence, Proved
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.