Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The probability that sample the proportion of adults with hypertension is greater than 0.5 is 0.090
How to determine the probability?
The given parameters are:
p = 47%
Sample size, n =500
The standard deviation is calculated as:
[tex]\sigma = \sqrt{np(1 - p)[/tex]
So, we have:
[tex]\sigma = \sqrt{500 * 47\%(1 - 47\%)[/tex]
Evaluate
σ = 11.16
The number of adults with hypertension is calculated as:
x = 500 * 0.5 = 250
And the mean is:
μ = 500 * 0.47 = 235
Start by calculating the z-score
[tex]z = \frac{x - \mu}{\sigma}[/tex]
This gives
[tex]z = \frac{250 - 235}{11.16}[/tex]
Evaluate
z = 1.34
The probability is then calculated as:
P(z >1.34) = ??
From z table of probabilities, we have:
P(z >1.34) = 0.090
Hence, the probability that sample the proportion of adults with hypertension is greater than 0.5 is 0.090
Read more about probability at:
https://brainly.com/question/251701
#SPJ4
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.