Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The student that simplified the expression incorrectly is student 2
How to determine the incorrect result?
The steps are given as:
[tex]\frac{\cot(\theta) + \tan(\theta)}{\cot(\theta)}[/tex]
Student 1:
- Step 1: [tex]\frac{\cot(\theta)}{\cot(\theta)} + \frac{\tan(\theta)}{\cot(\theta)}[/tex]
- Step 2: [tex]1 + \frac{\tan(\theta)}{\cot(\theta)}[/tex]
- Step 3: 1 + tan²(Ф)
- Step 4: sec²(Ф)
Student 2:
- Step 1: [tex]\frac{\cot(\theta)}{\cot(\theta)} + \frac{\tan(\theta)}{\cot(\theta)}[/tex]
- Step 2: [tex]\frac{1 + \tan^2(\theta)}{\cot(\theta)/\tan(\theta)}[/tex]
- Step 3: sec²(Ф)/tan²(Ф)
- Step 4: csc²(Ф)
As a general trigonometry rule;
[tex]\frac{\cot(\theta) + \tan(\theta)}{\cot(\theta)} = \sec^2(\theta)[/tex]
This means that student 1 is correct, while student 2 is not
The first error in student 2's workings is in step 2, where we have:
[tex]\frac{\cot(\theta)}{\cot(\theta)} + \frac{\tan(\theta)}{\cot(\theta)} = \frac{1 + \tan^2(\theta)}{\cot(\theta)/\tan(\theta)}[/tex]
The above expression is not justified and cannot be proved by any trigonometry rule
Since the step 2 is incorrect, the other steps cannot be used.
Hence, the student that simplified the expression incorrectly is student 2
Read more about trigonometric expressions at:
https://brainly.com/question/8120556
#SPJ1
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.